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A Harmonic Gradient Method for Unsteady
Supersonic Flow Calculations

Ping-Chih Chen*
Northrop Corporation, Hawthorne, California

and
D. D. Liut

Arizona State University, Tempe, Arizona

An accurate and effective method for calculations of unsteady three-dimensional supersonic flow has been
developed. The present method is capable of handling general cases of planar, coplanar, and nonplanar wing
planforms in the complete frequency domain. A harmonic-gradient potential model is provided for elementary
doublet panels to be made compatible with the wave number generated. Consequently the number of panel
elements required is least affected by the given Mach number and reduced frequency. Thus, the required panel
number can be optimized to as few as 30, a fraction of the number required by the existing methods. To assess
the accuracy and effectiveness of the present method, comparison with various available data is given.
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Nomenclature
= lifting pressure coefficient
= structural mode shapes

= reference chord length
= slope of leading or trailing edge of the panel
element

= freestream Mach number
= wing-fixed coordinates; (x,y,z) = (X/$L, Y/L,
Z/L) (see Fig. 1)

= control point location in (x,y,z) coordinates
= true physical coordinates
= position of leading or trailing edge of the panel

element at 77 = 0

= moving coordinates (see Fig. 1)
= oscillatory potential
= modified velocity potential = ̂ eikMX

= doublet solution of modified potential
= circular frequency of harmonic motion

= index of the number of chordwise element in
the yth strip

= index of the number of strip
- trailing edge of the wing
-wake

I. Introduction

AFTER 35 years of supersonic flight, a need still exists for
a reliable prediction of unsteady airload on interfering

lifting surface configurations in supersonic flow. Although re-
quirements for subsonic flutter analysis of interfering con-
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figurations are satisfied by the doublet-lattice method,1 an
equally effective supersonic method has been lacking.

Supersonic numerical lifting surface methods can be divided
into three categories: those that adopt 1) the velocity poten-
tial, 2) the acceleration potential, and 3) the gradient of the
velocity potential as the dependent variable. Typical of the
first method is the Mach-box method, whose shortcomings in-
clude the fact that the velocity potential must be determined
off of the planform in the so-called diaphragm regions. The
supersonic doublet-lattice method of Giesing and Kalman2

and the kernel-function method of Cunningham3'4 belongs to
the second category. In Ref. 2, questions are still unanswered
about the selection of downwash control point locations as
well as correlations with two-dimensional solutions. In Ref. 3,
the method has been widely accepted except that its results are
sensitive to the choice of pressure modes which are more
varied in number and form at supersonic speeds rather than at
subsonic.

In the third category, the potential-gradient method (PGM)
of Jones and Appa5 has shown promise of this approach to in-
terfering nonplanar configurations. The PGM permits an ex-
act idealization of the planform(s), without any need for
assumption of pressure modes, and can utilize the automatic
grid-generation scheme that has been developed for the sub-
sonic doublet-lattice method. However, Ref. 5 is limited by a
series expansion scheme in the supersonic kernel and hence
ceases to be valid in the higher-frequency domain as well as for
the low supersonic Mach numbers. Recent work of Hounjet6

extended the PGM to higher-frequency domain by using the
Laschka's exponential series representation in the supersonic
kernel of Harder and Rodden.8'13 Although Hounjet has im-
proved the validity of PGM in almost all his calculation cases,
no fewer panel elements are required for convergence than
those used by Jones and Appa.

On the other hand, the present development of the
harmonic-gradient (H-G) method is motivated by the
aeroelastic requirements set by the configurations of modern
fighter-aircraft and those of the new generation missile/fin
combination. In the former case, the complex canard wing
multiple-tails interaction warrants accurate prediction of
supersonic flutter boundaries. In the latter cases, the fin-body
or wing-body configuration could be susceptible to aeroelastic
instability as a result of combined body bending-fin torsion
motion during the supersonic cruising phase. Consequently a



372 P. -C. CHEN AND D. D. LIU J. AIRCRAFT

considerable amount of panels will be required for modeling a
complete configuration in order to perform a full-scale
aeroelastic analysis. Such modeling mandates a cost effective
panel method particularly for unsteady aerodynamic predic-
tions. Because of the consistent formulation of the harmonic
gradient model, the present method is least affected by the
given Mach number and the range of reduced frequency com-
pared to other methods. As will be seen in the later analysis of
this paper, the present H-G method not only reduces the panel
number substantially but yields improved accuracy in almost
all cases.

II. Formulation
The Supersonic Integral

Following the basic formulation of Jones,7 there is obtained
the integral solution of the oscillatory supersonic linearized
equation in the frequency domain:

0)

where \l/ is the oscillatory potential and A</> is the doublet solu-
tion to be sought. The supersonic kernel function His obtain-
ed from the elementary solution, i.e.,

(2)

where k = MK//3 and K is the reduced frequency, K=uL/Utx
and R is defined as

and
-x, rj=y0-y, $=z0-

(3)

(4)

of the computational procedure, the coordinate system (x,y,z)
can be transformed into a moving one (£,i7,f) whose origin is
placed at a local center (x0,y0,z0) on each panel being com-
puted. Accordingly, Eq. (7) is recast as

(8)

where Q indicates number of strips in the spanwise direction
and P is the number of chordwise elements in they'th strip. The
sending panel element is defined by (£/_/, i?/_/)<(£, ??)<(£/,
til). The doublet solution A<£,y is to be modeled by the propos-
ed harmonic-gradient formulation in the following section.

Harmonic-Gradient (H-G) Model
To evaluate Eq. (8), based on the given flow and downward

conditions, requires careful treatment of the integrand. In par-
ticular, the basic modeling technique for the approximation of
the first part of the integrand is the concern here.

In order to achieve computation accuracy and effectiveness
for the oscillatory motion in the high-frequency range, it is im-
portant to render the doublet solution and its convective gra-
dient uniformly valid throughout the complete frequency do-
main. This is to say that the doublet solution must be spatially
harmonic. In so doing, the element size is made automatically
compatible with the wave number generated along the chord;
hence, we expect the doublet solution obtained can be least af-
fected by the selected panel length. With this physical con-
sideration, the doublet solution of the integrand in Eq. (8) can
be modeled as

_ h 0 — ikMx (9)

The operator — — can be expressed ason
^ _

~~~ ~
-= —P—— — 9—— ($\ly i.. *z ^v vj/

where £y and Hz are the direction cosines of the normal at any
point on the planforms. Notice that in Eq. (1), (x0,y0fz0) and
(x,y,z) represent the field point and the source sending point,
respectively. Also, Eq. (1) is to integrate over the area A,
which encloses all sending points that originate from both the
wing panels and wakes within the inverse Mach cone of in-
fluence (Fig. 1).

Next, for convenience we define a kernel integral function
S, i.e.,

cos(^
-dr (6)

where r = (i?
2 + f2)^.

According to the area A defined by the inversed Mach cone,
the inner integral of Eq. (1) has the integration limit from the
given leading edge x = L(y) to R = 0. The boundary conditions
require A</> = 0 at x = L(y) and S(r,r) =0 at the Mach cone.
With these conditions, we then integrate Eq. (1) by parts and
obtain

d
—
on

—
OX

(7)

The above equation is to be solved based on a finite-element
approach similar to those in Refs. 5 and 6. For simplification

Indeed, this harmonic-gradient model can be consistently ex-
pressed in terms of the moving coordinates, i.e.,

(10)

where atj and b{j are complex constants representing the
doublet strength to be determined for each panel element.

It should be remarked that in the PGM formulation of Refs.
5 and 6, both assumed that the convective gradient of the
modified potential is constant, i.e.,

a
"a^ (11)

Fig. 1 Domain of influence and panel arrangement.
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expressed in PGM

a) W
Fig. 2 Modeling of potential along chord: a) potential-gradient
method, b) harmonic-gradient method.

As shown in Fig. 2, it can be seen that the above PGM
assumption is no more than a special case of H-G model; Eq.
(11) basically assumes the asymptotic form of Eq. (10), which
is spatially nonoscillatory. Unless the selected panel size is
made compatible with the given wave number, one should not
expect accurate results in the high-frequency range. This then
implies that the higher the given K, the smaller the panel size
must be accommodated in order to achieve the computational
accuracy. By contrast, the present H-G model removes this
stringent requirement for panel size. Hence, it is demonstrated
in our computations (Tables 1-4) that the same numerical ac-
curacy can be achieved with many less panels assigned than
with those of all the previous methods.

Moreover, unlike the present H-G formulation, the PGM
condition, Eq. (11), is not fully expressed in the moving coor-
dinates. As a result, Refs. 5 and 6 would suffer from other
computational shortcomings. This will be discussed further in
the next section.

Downwash
H-G model Eq. (10) is applied to Eq. (8), the downwash
velocity can be expressed as

(12)

dx
——
dz0

d2

2ir dndz0 * J dx
(16)

where $ is the so-called modified potential. Although the
PGM has made use of the moving coordinate for convenience
of computation, clearly Eq. (16) is not formally derived in this
system. More important, we found that the extra term, elkMxo
on the LHS, which perhaps resulted from an inconsistent
treatment of the coordinate system, indeed has created much
trouble for solution convergence in a number of cases. In fact,
an inconsistent formulation of the problem would yield an ex-
plicit x0-dependent equation such as Eq. (16), whereas a con-
sistent formulation in the moving coordinates leads it natural-
ly to the construction of the H-G model. As in the H-G for-
mulation of Eq. (15), it avoids the explicit dependence on the
(x,y,z) coordinates altogether-

Ill. Analysis
Planar Case (f=0)

The crux of the planar integral lies in the evaluation of the
integrand Q0S. The fact that the kernel integral 5 involving an
integral limit at Mach cone surface requires some cases in dif-
ferentiation which amounts to Hadamards' method of finite
part integral. Applying Hadamards' procedure to the operator
00S and after some manipulation, we arrive at two basically
regular terms,

U0S=-(l/r2)[L0+L1]

where

(17)

(18)

where

and

(13)

(14)

The symbols fi0 and 1_7 are the planar and the nonplanar
operators, respectively, defined as

= i a
0 r dr

Now, some words are in order to distinguish the basic dif-
ference in the downwash formulation between the H-G model
and that of PGM. For a given mode shape h(x,y,z), a descrip-
tive expression of Eq. (12) should read:

a2

(15)

in which the left-hand side is evaluated at the control point
(£^f) - (0,0,0) for each panel. Recall the downwash equation

r * .
Lj= ks

Now, applying the transformation

u= [Vr2-r2]/r

to Eq. 19 yields

L1 = kr

(19)

sin[(kr)u]du (20)

As suggested by Harder and Rodden,8 Laschka's exponential
series substitution can be used to integrate Llt i.e.,

u/\u2 + 1 — 1— flwexp( — ncu)

where the constant c and the coefficients an have been redefin-
ed by Jordan22 and recently by Desmarais9 for cases up to
7V=8, 12, and 24 terms. With the Laschka-Desmarais series,
Lj can then be integrated throughout the Mach cone domain
of influence.

Another type of singularity occurs at the Mach cone and the
panel intersection. Specifically this happens when one per-
forms chordwise integration in Eqs. (13) and (14) across each
element in £. For example, the integration of L0 reads

£(>?)/• -7
(22)
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which has a singular line at £ = r as the Mach cone intersects
the /th panel between £,_; and £/. This type of singularity is an
integrable one; hence, integration by parts of the above yields
two regular terms, i.e.,

J *(/*)/-7
[/Msin(/ (23)

Clearly L2 represents the chord wise integration. Since L2 is
now regular, it can be integrated numerically by means of,
say, Gaussian quadrature. It should be cautioned that its
lower integration limit is to be replaced by £ = r whenever the
limit exceeds the Mach cone. The value of £,(77) and S/./fo) are
determined by m^ + a/ and mi_1ii + oLi_1, which define the
leading edge and trailing edge of the /th element, respectively.

Lastly, the spanwise integration of Eq. (13) is complicated
by a dipole-like singularity at r = 0. This type of singularity ex-
ists only in the planar case and is common to both supersonic
panels and subsonic panels. Except in the former case, all
singularities occur in the element considered together with all
preceding elements along the chordwise strip within the in-
fluence domain. Hence, following Rodden et al.,1 we use a
parabolic fit of L2(rj) to evaluate this singular integral across a
narrow strip in the singular region of the element, i.e.,

(24)

ACp

Im ACp-
Re ACp_
Im ACp«
Re ACpA

JORDAN (2D) (REF 12)

PRESENT (3D)

0.2 rfO.3 0.4 0.5 0.6 0.7 0.8 0.9
/ X/C

Fig. 3 Comparison of unsteady pressure with Jordan's two-
dimensional method at M=1.25 and /if =2.0; pitching axis at the
leading edge.

M-1.2 K«I.O
MODES I H • I

2 H - X-C/2
3 H • (X-C/2)2

1.145

Table 1 AGARD swept wing at M= 1.2 and K= 1.0 with three modes

Methods
Elements

Qn

021

Chi

Ol2

Q22

Q32

Qn

Q23

Q33

MOD

ARG*
MOD

ARG
MOD

ARG
MOD

ARG
MOD

ARG
MOD

ARG
MOD

ARG
MOD

ARG
MOD

ARG

Present
(150)

3.705

95.68
0.93

143.1
0.91

111.1
4.502

21.21
2.008

64.59
1.298

43.55
2.78

5.699
2.298

3.812
1.378

21.09

Present
(100)

3.689

95.54
0.9343

142.1
0.909

111.5
4.479

21.39
2.001

64.09
1.306

43.95
2.824

6.168
2.291

4.23
1.393

20.66

Present
(50)

3.807

94.42
0.982

139.9
0.935

110.1
4.613

20.54
2.074

62.73
1.344

43.22
2.949

5.750
2.365

4.051
1.455

20.10

Present
(30)

3.775

94.21
0.9715

138.0
0.9341

110.3
4.604

20.64
2.048

60.77
1.382

41.97
3.031

4.262
2.354

1.736
1.462

14.27

Ref. 6
(150)

3.697

98.34
0.891

143.43
0.916

114.28
4.575

24.04
1.966

65.78
1.335

45.36
2.892

4.75
2.333

5.39
1.378

20.03

Ref. 5
(147)

3.486

100.16
1.012

147.82
0.946

113.95
4.492

24.98
2.040

64.06
1.291

41.53
2.644

-0.30
2.008

2.36
1.218

24.88

Ref. 14
(600)

3.570

96.50
0.868

144.70
0.877

112.79
4.370

21.24
1.914

65.75
1.255

43.47
2.572

3.48
'2.213

2.58
1.270

20.09

Ref. 15
(1734)

3.665

95.78
0.904

143.00
0.912

112.57
4.490

21.02
1.983

64.37
1.313

43.52
2.720

3.69
2.301

2.94
1.346

19.85

* Degrees
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Nonplanar Case
The nonplanar integral in Eq. (13) reads

It turns out that this technique works out equally well for the
supersonic case.

(25)

Clearly 0;S involves higher-order differentiation than Q0S
does. However, to derive the complete expression of the
nonplanar integral only requires laborious algebriac
manipulations. Since the singularities involved are all in-
tegrable ones, one can evaluate Eq. (25) following essentially
the similar procedure to that of the planar case.

Wake Treatment
As the wake sustains no lift, this implies that ACp = 0 across

the wake. Thus, the doublet solution on wake can be expressed
as

(26)

where A</>w and A</>T E represent A</> on the wake and at the
trailing edge, respectively.

The doublet strength A0T.E. of a given jth strip, according
to the H-G model, can be expressed in terms of aijt i.e.,

(27)

For each given yth strip, Eq. (27) can be expressed in terms
of a matrix equation

(28)

where in the case of i = P, Eq. (28) reduces to Eq. (27). Com-
bining Eqs. (26) and (7) and following the similar evaluation
procedures for W yield the downwash contribution Ww from
the wake.

Kinematic Boundary Conditions
For a given mode shape h the unknown doublet strength atj

in Eq. (10) can be evaluate by the following matrix equation,
i.e.,

M-1.05 K-2.0

W] [EJtij] ] ( a u } = (29)

and the btj in Eq. (9) can be obtained in terms of atj by the
following recurrence formula

1 —-2.0 —— *H

T
1.0

i
Table 2 Rectangular wing at M= \

Methods
Elements

MOD
Qn

ARG
MOD

Q21
ARG

MOD
Qsi

ARG
MOD

Q41
ARG

MOD
Ql2

ARG
MOD

Q22
ARG

MOD
Q32

ARG
MOD

Q42
ARG

MOD
Ql3

ARG
MOD

Q23
ARG

MOD
Q33

ARG
MOD

Q43
ARG

MOD
Ql4

ARG
MOD

Q24
ARG

MOD
Q34

ARG
MOD

Q44
ARG

Present Present
(200)

6.328

97.28
3.851

- 167.6
0.480

2.80
1.716

106.5
0.698

23.89
0.913

86.26
0.626

167.3
0.233

37.75
0.639

88.67
0.3179

174.7
0.1139

84.37
0.176

94.2
1.716

106.5
1.084

-157.0
0.179

2.308
0.846

126.0

(100)

6.462

95.79
3.932

-168.7
0.499

2.926
1.828

105.2
0.709

23.67
0.930

85.49
0.642

166.4
0.247

36.32
0.656

87.4
0.326

173.5
0.116

83.12
0.187

93.26
1.828

105.2
1.154

-158.3
0.188

0.9758
0.931

124.3

MODES 1
2
3
4

.05 and K=2

Present
(50)

6.484

101.3
3.935

-161.3
0.658

12.05
1.813

109.2
0.670

32.4
0.878

91.7
0.623

174.3
0.226

43.36
0.661

95.8
0.344

-177.1
0.095

85.1
0.187

100.9
1.813

109.2
1.134

-152.4
0.224

12.54
0.89

127.0

H- 1
H-0.5-X
H-(O.S-X)2

H-y2

.0 with four modes

Ref. 16 Ref. 14
(311) (544)

6.238 5.992

94.3 94.2
3.851 3.68

-173.3 173.3
0.289 0.285

13.3 13.0
1.73 1.546

103.7 104.0
0.749 0.703

17.08 16.6
0.96 0.904

80.59 80.7
0.646 0.61

157.8 158.8
0.251 0.2256

30.02 31.53
0.619 0.587

83.8 83.4
0.303 0.283

168.2 168.0
0.116 0.1149

82.6 81.2
0.174 0.153

89.67 88.9
1.735 1.55

103.7 103.7
1.112 0.99

- 162.7 - 162.2
0.132 0.127

160.0 162.6
0.896 0.743

122.2 123.4

(30)

Pressure and Generalized Forces
The pressure coefficient ACp can be related to the doublet

strength a^ and b{j defined in Eqs. (9) and (10), i.e.,

AC^.tJf,-] =(!3/M2)au-(ik/M/3)bije-ik

and the generalized forces are given by

(31)

(32)

where /z(/)(jt/) is the 7th structural mode, ACp^ (*,-) is the
pressure due to the /th mode, and A^y is the span width of the
panel element considered.

IV. Results and Discussion
To assess the accuracy of the H-G solution and to

demonstrate the computational efficiency and effectiveness of
the present method, various examples of a wide class of wing
planforms are given in Figs. 3-7, together with Tables 1-4.
Correlations with other available data are also presented.
Without loss of generality, the reference chord length L in all
the following numerical cases is set to unity for convenience.
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0.6 0.7 0.8 0.9 1.0
*** PRESENT
—— LASCHKA

ImACp (REFI3)

K=l.5
RECTANGULAR WING C/R=2)
PITCHING ABOUT MID CHORD

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 4 Unsteady pressure distribution of an aspect-ratio-two rec-
tangular wing at M= 2.0 and K= 1.5; pitching axis at the midchord: a)
pressure distribution along midsection; b) spanwise distributions of
unsteady normal load.

Verification of Accuracy
To verify the present results with other existing methods,

two typical cases are selected for comparison. First, we have
compared the present results with the exact linearized solu-
tions in Ref. 20 and those of Miles in Ref. 21 for delta wings
with subsonic, sonic, and supersonic leading edges in steady
lifting flow as well as in slowly oscillatory flow, respectively.
We found that all results for pressures, forces, and damping-
in-pitch moments check well with the above theoretical results.
Second, the computed in-phase and the out-of-phase pressures
at the root-chord section of a high-aspect-ratio rectangular
wing have been compared with various available two-
dimensional results. These include: Chadwick-Platzer11 and
LiuandPi10 for cases of M= 1.15, K=QA, 1.2, and M= 1.5,
K= 0.832, 1.25, with pitching axis at leading edge and at mid-
chord, respectively, and Jordon12 for cases of M=1.25,
K=2.0 in plunging mode and in pitching mode. Again we
have found that the present H-G results are in excellent agree-
ment with all the above cases. One such typical comparison is
presented in Fig. 3. Figure 4a shows the root-chord pressure of
an aspect-ratio-two rectangular wing; Fig. 4b shows the span-
wise normal force distribution. Also, good agreement is
observed between the present results and those of Laschka.13

Computational Efficiency and Effectiveness
In contrast to the previous methods, the present method,

because of its H-G model, improves the computational effi-
ciency by substantially reducing the number of panel elements
used. Meanwhile, the same accuracy can be achieved in most
cases.

Tables 1-4 summarize the generalized forces computed for
the AGARD swept wing, rectangular wing, and wing-tail-fin
combination. In Table 1, we use 150 panel elements to as few
as 30 elements to compute the generalized forces Q//S1, whereas
four previous methods5'6'14'15 adopted 150 panel elements to as

a)

b)

O.I O.2 0.3 0.4 0.5 0.6 O.7 O.B 0.9 I .O

ACp

7.0

6.0

5.O

4.O

3.0

2.0

1.0

0.0

-1.0

-2.O

-3.0

PRESENT
O O O O EXPT REF 22

R«ACp

ImACp

O.t 0.2 0.3 0.4 0.9 0.6 0.7 OJB 0.9 1.0

C)

Fig. 5 Comparison of computed unsteady pressure on a Northrop
F-5 wing with measured data of NLR: a) M= 1.328, #=0.1, and
F=18.1%; b) M= 1.188, #=0.11, and F=18.1<7o; c) M= 1.188,
#=0.11, and r=50<7o.

many as some 1700 elements. The present results using 30
elements agree well with all other methods. Table 2 presents
the generalized forces for the rectangular wing oscillating in
four selected modes at M= 1 .05 and K=2.Q. Again, with 50 to
200 panel arrangements we have demonstrated that the present
method at this low Mach number and moderately high fre-
quency results in satisfactory comparison with those of Refs.
14 and 16.

In Table 3, three structural modes are used for the AGARD
T-tail interferences, i.e., tail: /Z;=0, h2 = 0 and h3 = Y\ fin:

In comparison with other data quoted, it is interesting to
observe that all methods disagree in forces Q32 and Q3]. We
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Fig. 6 AGARD wing-tail-fin
combination.
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Fig. 7 Phase plane diagram for generalized aerodynamic coefficients
(AGARD wing-tail configuration).

believe that the disagreement between the present results and
those of Refs. 5 and 6 is probably caused by the explicit
dependence on the exponential term eikMxo in Eq. (16), which
could be the source of numerical errors in Refs. 5 and 6.

Next, results for an AGARD wing-tail nonplanar case
(Z = 0.6) and coplanar case (Z = 0) are presented in Table 4
and Fig. 7, respectively, The present results compare well with
those of Ref. 18 in both cases. In Table 4, notice that there is
little difference between results computed using 50 elements
and 100 elements; again, this assures the cost-effectiveness of
the H-G method in that the number of elements can be op-
timized and does not depend on Mach number and reduced
frequency K. Lastly, it should be pointed out that Hounjet's
result6 correlates poorly with the present result for cases of
K= 1.5, whereas it correlates well for the case of K=0. The

Table 3 AGARD fin-tail interference ZTAIL = 1.2 at M= 1.6
and #=1.5

Methods
Elements

Qn

Q21

Qsi

Ql2

Q22

Q32

Ql3

Q23

Q33

MOD

ARG
MOD

ARG
MOD

ARG
MOD

ARG
MOD

ARG
MOD

ARG
MOD

ARG
MOD

MOD
ARG

ARG

Present
(100)

0.8203

88.35
0.1064

119.0
0.2056

20.09
0.7133

15.8
0.2597

61.23
0.1611

- 62.46
0.0848

37.14
0.0298

21.87
0.6493

84.50

Present
(50)

0.8323

89.82
0.1117

116.6
0.2131

25.76
0.7433

20.68
0.2609

62.53
0.1775

-51.27
0.0887

40.7
0.0305

24.45
0.6532

85.58

Ref. 6
(105)

0.8238

83.58
0.0887

128.55
0.1026

-62.56
0.7115

13.23
0.2600

63.56
0.0470

- 166.97
0.0954

61.86
0.0316

48.18
0.7177

88.47

Ref. 5
(105)

0.7801

90.92
0.0905

131.93
0.1898

72.84
0.6860

18.22
0.2671

67.30
0.1397

177.11
0.0873

64.92
0.1812

7.90
0.6686

89.79

Ref. 19

7.1943

79.27
0.2094

71.51
2.5818

79.67
1.5532

-24.23
0.3924

43.99
0.3766

-68.31
2.4391

87.06
0.0238

27.75
1.0056

88.01

latter is expected as the eikMxo
tribute no error.

term would vanish and con-

Correlation with Experimental Data
Finally, we compare our computed results with the ex-

perimental data obtained for the Northrop F-5 platform by
Tijdeman et al. at NLR.22 Figures (5a)-(5c) present in-phase
and out-of-phase pressures ACps at two span stations
(7=0.181 and 0.50) at low reduced frequencies (K=0.1 and
0.11). The present results compare fairly well with Tijdeman's
data, particularly for the out-of-phase pressures. It is in-
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Table 4 AGARD wing-tail interference ZTAIL = 0.6 at M= 3.0
and K= 1.5

Methods
Elements

Qn

Q2i

Qai

Q4i

Ql2

Q22

Q32

Q42

Q33

Q43

Q34

Q44

MOD

ARG
MOD

ARG
MOD

ARG
MOD

ARG
MOD

ARG
MOD

ARG
MOD

ARG
MOD

ARG
MOD

ARG
MOD

ARG
MOD

ARG
MOD

ARG

Present
(100)

0.2345

64.73
0.3972

22.58
0.1325

51.47
0.1008

61.55
0.0908

136.7
0.3664

97.55
0.1006

121.0
0.0776

123.7
0.3983

86.45
0.2750

87.14
0.5504

32.43
0.4800

51.45

Present
(50)

0.2427

66.36
0.4281

26.89
0.1361

56.56
0.1042

66.32
0.0982

136.1
0.3842

98.92
0.1063

120.8
0.0820

123.4
0.3965

86.9
0.2751

88.32
0.5638

34.97
0.4829

52.66

Ref. 6
(170)

0.2512

68.57
0.4335

21.60
0.2616

58.93
0.1863

63.55
0.0905

150.71
0.4026

103.68
0.2009

129.58
0.1457

130.66
0.3995

87.62
0.2761

88.80
0.5349

30.54
0.4555

49.35

Ref. 18

0.2375

67.40
0.4029

19.35
0.1504

33.55
0.1180

43.47
0.0872

148.82
0.3742

101.23
0.1045

118.02
0.0833

119.16
0.3936

87.63
0.2797

88.52
0.5253

30.03
0.4531

47.28

teresting to observe that the measured in-phase pressures ap-
pear to be "wavy." We believe that the waviness of ACp is
typical of nonlinear unsteady supersonic flow (e.g., see Fig. 19
of Ref. 10), which is beyond the prediction capability of the
present linear theory.

V. Conclusion
It has been shown that the H-G method has the following

advantages over the previous unsteady supersonic methods:
1) The formulation of H-G method is a consistent one; it is

general in the frequency domain.
2) The H-G method procedure is versatile in handling planar

and coplanar as well as nonplanar planforms.
3) The required number of panel elements is least affected

of all the procedures by the given Mach number and reduced
frequencies.

4) The required number of panel elements is only a fraction
of those required by previous PGM methods.
For these reasons, we believe that a computationally efficient,
cost-effective method for unsteady supersonic three-
dimensional flow prediction is finally in hand. Once fully
developed, the H-G method could very well complement the
doublet-lattice method in subsonic flow. It would provide the
aircraft industry with an effective tool for aeroelastic applica-
tions in supersonic flow.

Further research effort in developing the H-G method is still
required. For example, in the general frequency domain, an
effective method that can handle unsteady flow for bodies of
revolution and for wing-body combinations is still lacking.
Related research areas include the low-supersonic flow regime,
where nonlinearity is important. Although from a practical
standpoint this nonlinear flow regime is of primary impor-

[D D. D. LIU J. AIRCRAFT

tance, research efforts in the past have not been fruitful in of-
fering an effective method accounting for the three-
dimensional nonlinearity. Continuing effort to extend the
H-G method toward this end is in progress.
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