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A Harmonic Gradient Method for Unsteady
Supersonic Flow Calculations

Ping-Chih Chen*
Northrop Corporation, Hawthorne, California

D. D. Liut
Arizona State University, Tempe, Arizona

An accurate and effective method for calculations of unsteady three-dimensional supersonic flow has been
developed. The present method is capable of handling general cases of planar, coplanar, and nonplanar wing
planforms in the complete frequency domain. A harmonic-gradient potential model is provided for elementary
doublet panels to be made compatible with the wave number generated. Consequently the number of panel
elements required is least affected by the given Mach number and reduced frequency. Thus, the required panel
number can be optimized to as few as 30, a fraction of the number required by the existing methods. To assess
the accuracy and effectiveness of the present method, comparison with various available data is given.

Nomenclature

ACp =lifting pressure coefficient

h =structural mode shapes

i =V~1

L =reference chord length

m =slope of leading or trailing edge of the panel
element

M =freestream Mach number

(x,¥,2) =wing-fixed coordinates; (x,y,2)=(X/BL, Y/L,
Z/L) (see Fig. 1)

(x0,¥9-29) ~ =control point location in (x,y,z) coordinates

(X,Y,2) =true physical coordinates

o =position of leading or trailing edge of the panel
element at n=0

B =VM?~1

&,n,0 =moving coordinates (see Fig. 1)

Y = oscillatory potential

& = modified velocity potential = ye*MX

AD = doublet solution of modified potential

® =circular frequency of harmonic motion

Subscripts

i =index of the number of chordwise element in
the jth strip

J =index of the number of strip

T.E. =trailing edge of the wing

w =wake

I. Introduction

FTER 35 years of supersonic flight, a need still exists for
a reliable prediction of unsteady airload on interfering
lifting surface configurations in supersonic flow. Although re-
quirements for subsonic flutter analysis of interfering con-
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figurations are satisfied by the doublet-lattice method,' an
equally effective supersonic method has been lacking.

Supersonic numerical lifting surface methods can be divided
into three categories: those that adopt 1) the velocity poten-
tial, 2) the acceleration potential, and 3) the gradient of the
velocity potential as the dependent variable. Typical of the
first method is the Mach-box method, whose shortcomings in-
clude the fact that the velocity potential must be determined
off of the planform in the so-called diaphragm regions. The
supersonic doublet-lattice method of Giesing and Kalman?
and the kernel-function method of Cunningham®* belongs to
the second category. In Ref. 2, questions are still unanswered
about the selection of downwash control point locations as
well as correlations with two-dimensional solutions. In Ref. 3,
the method has been widely accepted except that its results are
sensitive to the choice of pressure modes which are more
varied in number and form at supersonic speeds rather than at
subsonic.

In the third category, the potential-gradient method (PGM)
of Jones and Appa’ has shown promise of this approach to in-
terfering nonplanar configurations. The PGM permits an ex-
act idealization of the planform(s), without any need for
assumption of pressure modes, and can utilize the automatic
grid-generation scheme that has been developed for the sub-
sonic doublet-lattice method. However, Ref. 5 is limited by a
series expansion scheme in the supersonic kernel and hence
ceases to be valid in the higher-frequency domain as well as for
the low supersonic Mach numbers. Recent work of Hounjet®
extended the PGM to higher-frequency domain by using the
Laschka’s exponential series representation in the supersonic
kernel of Harder and Rodden.%!? Although Hounjet has im-
proved the validity of PGM in almost all his calculation cases,
no fewer panel elements are required for convergence than
those used by Jones and Appa.

On the other hand, the present development of the
harmonic-gradient (H-G) method is motivated by the
aeroelastic requirements set by the configurations of modern
fighter-aircraft and those of the new generation missile/fin
combination. In the former case, the complex canard wing
multiple-tails interaction warrants accurate prediction of
supersonic flutter boundaries. In the latter cases, the fin-body
or wing-body configuration could be susceptible to aeroelastic
instability as a result of combined body bending-fin torsion
motion during the supersonic cruising phase. Consequently a
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considerable amount of panels will be required for modeling a
complete configuration in order to perform a full-scale
aeroelastic analysis. Such modeling mandates a cost effective
panel method particularly for unsteady aerodynamic predic-
tions. Because of the consistent formulation of the harmonic
gradient model, the present method is least affected by the
given Mach number and the range of reduced frequency com-
pared to other methods. As will be seen in the later analysis of
this paper, the present H-G method not only reduces the panel
number substantially but yields improved accuracy in almost
all cases.

II. Formulation
The Supersonic Integral

Following the basic formulation of Jones,” there is obtained
the integral solution of the oscillatory supersonic linearized
equation in the frequency domain:

]

1
Wioroz)= 5= || AscroHEnDLdy

where v is the oscillatory potential and A¢ is the doublet solu-
tion to be sought. The supersonic kernel function H is obtain-
ed from the elementary solution, i.e.,

kR
H(E,n,0 =2

e~ ikME (2)

where k=MK/B and K is the reduced frequency, K=wlL/U_;
and R is defined as

R= [ = §1% 3
and

E=Xg—X, 1=Yo—), {=2—2 4

a
The operator e can be expressed as
n

8,8 8,8 0 (5)
am Yoy, ‘8z, Yo Cof

where £, and £z are the direction cosines of the normal at any
point on the planforms. Notice that in Eq. (1), (x,,)4,2) and
(x,5,2) represent the field point and the source sending point,
respectively. Also, Eq. (1) is to integrate over the area A,
which encloses all sending points that originate from both the
wing panels and wakes within the inverse Mach cone of in-
fluence (Fig. 1). .

Next, for convenience we define a kernel integral function
S, i.e.,

r cos(kNT =7

where r= (% + %)%,

According to the area A defined by the inversed Mach cone,
the inner integral of Eq. (1) has the integration limit from the
given leading edge x = L(¥) to R =0. The boundary conditions
require A¢ =0 at x=L(y) and S(r,r) =0 at the Mach cone.
With these conditions, we then integrate Eq. (1) by parts and
obtain

W(X0,¥0:20) = [ 9 SSMOH 4 Ag-e~*ME] S(£ ydxd
0:Y0:%p =27 o ddxeron —a;[ b-e 5T Ly

Q)

The above equation is to be solved based on a finite-element
approach similar to those in Refs. 5 and 6. For simplification
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of the computational procedure, the coordinate system (x,y,z)
can be transformed into a moving one (£, %, {) whose origin is

placed at a local center (x,,¥y,2,) on each panel being com-
puted. Accordingly, Eq. (7) is recast as

[} P

1 a j

V(X0,Y0:20) = —2_7rj§ ,g n Sﬂj—l

)7 2 agye-m) sie,naga ®
gy 0% ! ’ !

where Q indicates number of strips in the spanwise direction
and P is the number of chordwise elements in the jth strip. The
sending panel element is defined by (¢;_,, 7, ;)< (&, D <(&,,
7;). The doublet solution A¢,; is to be modeled by the propos-
ed harmonic-gradient formulation in the following section.

Harmonic-Gradient (H-G) Model

To evaluate Eq. (8), based on the given flow and downward
conditions, requires careful treatment of the integrand. In par-
ticular, the basic modeling technique for the approximation of
the first part of the integrand is the concern here.

In order to achieve computation accuracy and effectiveness
for the oscillatory motion in the high-frequency range, it is im-
portant to render the doublet solution and its convective gra-
dient uniformly valid throughout the complete frequency do-
main. This is to say that the doublet solution must be spatially
harmonic. In so doing, the element size is made automatically
compatible with the wave number generated along the chord;
hence, we expect the doublet solution obtained can be least af-
fected by the selected panel length. With this physical con-
sideration, the doublet solution of the integrand in Eq. (8) can
be modeled as

a .
E[Aqsij] :bije_'kMX ©

Indeed, this harmonic-gradient model can be consistently ex-
pressed in terms of the moving coordinates, i.e.,

a . .
—[A¢p e~ #ME ] = g o HME 10)

¢

where a; and b; are complex constants representing the
doublet strength to be determined for each panel element.

It should be remarked that in the PGM formulation of Refs.
5 and 6, both assumed that the convective gradient of the
modified potential is constant, i.e.,

0 )
E[Aqb,«je*”‘Mx] =c; (11)

R=0

S
S S e
<SHS>

Fig. 1 Domain of influence and panel arrangement.
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Fig. 2 Modeling of potential along chord: a) potential-gradient
method, b) harmonic-gradient method.

As shown in Fig. 2, it can be seen that the above PGM
assumption is no more than a special case of H-G model; Eq.
(11) basically assumes the asymptotic form of Eq. (10), which
is spatially nonoscillatory. Unless the selected panel size is
made compatible with the given wave number, one should not
expect accurate results in the high-frequency range. This then
implies that the higher the given K, the smaller the panel size
must be accommodated in order to achieve the computational
accuracy. By contrast, the present H-G model removes this
stringent requirement for panel size. Hence, it is demonstrated
in our computations (Tables 1-4) that the same numerical ac-
curacy can be achieved with many less panels assigned than
with those of all the previous methods.

Moreover, unlike the present H-G formulation, the PGM
condition, Eq. (11), is not fully expressed in the moving coor-
dinates. As a result, Refs. 5 and 6 would suffer from other
computational shortcomings. This will be discussed further in
the next section.

Downwash

H-G model Eq. (10) is applied to Eq. (8), the downwash
velocity can be expressed as

oY
W:?= [gy V(xp,Y0:20) + L, W(X0,Y0,20)] (12)
0

where

W(X0,Y0,20) = —5—
Lt

E
27 = ni—1 i1
X e *ME[Q, .S+ {20, - S]a,dEdy (13)

and

1 EI . nj
V(x0,Y0,20) = —5— Z §S e kME[Q), 5] S ds (14
T &1 j

g

The symbols @, and @, are the planar and the nonplanar
operators, respectively, defined as

Now, some words are in order to distinguish the basic dif-
ference in the downwash formulation between the H-G model
and that of PGM. For a given mode shape %(x,y,z), a descrip-
tive expression of Eq. (12) should read:

()=~ 2oz V3¢

X [Ape~*ME1S(¢,r)dEdy 15

in which the left-hand side is evaluated at the control point
(¢,1,9=1(0,0,0) for each panel. Recall the downwash equation

where ® is the so-called modified potential. Although the
PGM has made use of the moving coordinate for convenience
of computation, clearly Eq. (16) is not formally derived in this
system. More important, we found that the extra term, e#M¥o
on the LHS, which perhaps resulted from an inconsistent
treatment of the coordinate system, indeed has created much
trouble for solution convergence in a number of cases. In fact,
an inconsistent formulation of the problem would yield an ex-
plicit x,-dependent equation such as Eq. (16), whereas a con-
sistent formulation in the moving coordinates leads it natural-
ly to the construction of the H-G model. As in the H-G for-
mulation of Eq. (15), it avoids the explicit dependence on the
(x,,2) coordinates altogether

II1. Analysis
Planar Case ({=0)

The crux of the planar integral lies in the evaluation of the
integrand ©,S. The fact that the kernel integral S involving an
integral limit at Mach cone surface requires some cases in dif-
ferentiation which amounts to Hadamards’ method of finite
part integral. Applying Hadamards’ procedure to the operator
Q,S and after some manipulation, we arrive at two basically
regular terms,

Q,S= —{/r)[Ly+L,] 17)

where '
Ly=[¢cos(kvVE?—r?) 1 /NE —1? (18)
legéksin[k\/‘rz—-rz]dr 19)

Now, applying the transformation

u=NZ=7/r
to Eq. 19 yields

Ny

L, =krg [u/Nu? +1]sin[(kr)u]du (20)

0

As suggested by Harder and Rodden,® Laschka’s exponential
series substitution can be used to integrate L,, i.e.,

N
uNu+1=1~ Y, a,exp(—ncw) 3]

n=1

where the constant ¢ and the coefficients @, have been redefin-
ed by Jordan® and recently by Desmarais® for cases up to
N=8, 12, and 24 terms. With the Laschka-Desmarais series,
L, can then be integrated throughout the Mach cone domain
of influence.

Another type of singularity occurs at the Mach cone and the
panel intersection. Specifically this happens when one per-
forms chordwise integration in Eqgs. (13) and (14) across each
element in £. For example, the integration of L, reads

£l .
e MLy + L )dE (22)
Emj—g

L= S
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which has a singular line at £ =r as the Mach cone intersects
the ith panel between £;_; and &;. This type of singularity is an
integrable one; hence, integration by parts of the above yields
two regular terms, i.e.,

E(n);
L,(n) =sinkV§2 —r? . [ke™ME] ! ’

Emi—y

£(w); .
+ SE(:) [iMsin (kNEZ —r?) + L, ] e~ *MEd¢ (23)
i1

Clearly L, represents the chordwise integration. Since L, is
now regular, it can be integrated numerically by means of,
say, Gaussian quadrature. It should be cautioned that its
lower integration limit is to be replaced by & =r whenever the
limit exceeds the Mach cone. The value of £,(») and £;_,(y) are
determined by mn+«; and m;_;n+a;_,;, which define the
leading edge and trailing edge of the ith element, respectively.

Lastly, the spanwise integration of Eq. (13) is complicated
by a dipole-like singularity at r=0. This type of singularity ex-
ists only in the planar case and is common to both supersonic
panels and subsonic panels. Except in the former case, all
singularities occur in the element considered together with all
preceding elements along the chordwise strip within the in-

fluence domain. Hence, following Rodden et al.,! we use a’

parabolic fit of L,(n) to evaluate this singular integral across a
narrow strip in the singular region of the element, i.e.,

< 1 <1
|- S Laman={" —ant+Br+Can

2 (24)

M=i2 K=I.0

1.613

39*
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Fig. 3 Comparison of unsteady pressure with Jordan’s two-
dimensional method at M=1.25 and K=2.0; pitching axis at the
leading edge.

MODES | H = |
2H= X-Cr2
T I H = (X-Cr2)2

1.145

Table 1 AGARD swept wing at M=1.2 and K=1.0 with three modes

Methods Present Present Present Present Ref. 6 Ref. 5 Ref. 14 Ref. 15
Elements (150) (100) (50) 30) (150) (147) (600) (1734)

MOD 3.705 3.689 3.807 3.775 3.697 3.486 3.570 3.665
Qs

ARG* 95.68 95.54 94.42 94.21 98.34 100.16 96.50 95.78

MOD 0.93 0.9343 0.982 0.9715 0.891 1.012 0.868 0.904
Qu '

ARG 143.1 142.1 139.9 138.0 143.43 147.82 144.70 143.00

MOD 0.91 0.909 0.935 0.9341 0.916 0.946 0.877 0.912
Qy

ARG 111.1 111.5 110.1 110.3 114.28 113.95 112.79 112.57

MOD 4.502 4.479 4.613 4.604 4.575 4.492 4.370 4.490
Q2

ARG 21.21 21.39 20.54 20.64 24.04 24.98 21.24 21.02

MOD 2.008 2.001 2.074 2.048 1.966 2.040 1.914 1.983
Qx»

ARG 64.59 64.09 62.73 60.77 65.78 64.06 65.75 64.37

MOD 1.298 1.306 1.344 1.382 1.335 1.291 1.255 1.313
Qs

ARG 43.55 43.95 43.22 41.97 45.36 41.53 43.47 43.52

MOD 2.78 2.824 2.949 3.031 2.892 2.644 2.572 2.720
Qi3

ARG 5.699 6.168 5.750 4.262 4.75 -0.30 3.48 3.69

MOD 2.298 2.291 2.365 2.354 2.333 2.008 2.213 2.301
Qa3

ARG 3.812 4,23 4,051 1.736 5.39 2.36 2.58 2.94

MOD 1.378 1.393 1.455 1.462 1.378 1.218 1.270 1.346
Qa3

ARG 21.09 20.66 20.10 14.27 20.03 24.88 20.09 19.85

*Degrees
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It turns out that this technique works out equally well for the
supersonic case.

Nonplanar Case ({#0)
The nonplanar integral in Eq. (13) reads

1 9 1
2,5 =— =0 =" (—7) (LotLp @5

r

Clearly Q,S involves higher-order differentiation than Q,S
does. However, to derive the complete expression of the
nonplanar integral only requires laborious algebriac
manipulations. Since the singularities involved are all in-
tegrable ones, one can evaluate Eq. (25) following essentially
the similar procedure to that of the planar case.

Wake Treatment

As the wake sustains no lift, this implies that AC, =0 across
the wake. Thus, the doublet solution on wake can be expressed
as

Ag,, =Adr g exXp (kB %15, /M] (26)

where A¢,, and A¢rp represent A¢ on the wake and at the
trailing edge, respectively.

The doublet strength A¢r g of a given jth strip, according
to the H-G model, can be expressed in terms of ;, i.e.,

p
E la;—ag-y)
i=]

For each given jth strip, Eq. (27) can be expressed in terms
of a matrix equation

(Apre);=ay— KM 8 /ikM  (27)

{(Adre);} = LE;;]lay) 28

where in the case of i=P, Eq. (28) reduces to Eq. (27). Com-
bining Egs. (26) and (7) and following the similar evaluation

procedures for W yield the downwash contribution W,, from
the wake.

Kinematic Boundary Conditions

For a given mode shape 4 the unknown doublet strength a;;
in Eq. (10) can be evaluate by the following matrix equation,
i.e.,

LW+ W, 1E; ;11 Lay) = { (A +iKh) ;} 29

and the b; in Eq. (9) can be obtained in terms of a; by the
following recurrence formula

- Y (@;—a,_p)/explikM Y (x;—x,_)1  (30)
v=1 i—1

Pressure and Generalized Forces

The pressure coefficient AC, can be related to the doublet
-strength @; and b;; defined in Egs. (9) and (10), i.e.,

AC"U [x;1 =(B/M?)a; — (ik/MB)b e~ *Mxi v(31)

and the generalized forces are given by

Oy= ZA}’jSXI
ij

Y.

A (x)ACps_f’ ()dx 32)

HARMONIC GRADIENT METHOD 375

M=1.05 K=2.0
MODES | H=1
1.0 2 H=05-X
3 H=(05-x)2
f—— 2.0 —a] 4 H=y2
Table 2 Rectangular wing at M =1.05 and K=2.0 with four modes
Methods Present  Present  Present Ref. 16 Ref. 14
Elements (200) (100) (50) (311) (544)
MOD 6.328 6.462 6.484 6.238 5.992
Qu
ARG 97.28 95.79 101.3 94.3 94.2
MOD 3.851 3.932 3.935 3.851 3.68
Qu
ARG -167.6 —168.7 -—161.3 —173.3 173.3
MOD 0.480 0.499 0.658 0.289 0.285
Q3 '
ARG 2.80 2.926 12.05 13.3 13.0
MOD 1.716 1.828 1.813 1.73 1.546
(O
ARG 106.5 105.2 109.2 103.7 104.0
MOD 0.698 0.709 0.670 0.749 0.703
Q2
ARG 23.89 23.67 32.4 17.08 16.6
MOD 0.913 0.930 0.878 0.96 0.904
Q2
ARG 86.26 85.49 91.7 80.59 80.7
MOD 0.626 0.642 0.623 0.646 0.61
Qs
ARG 167.3 166.4 174.3 157.8 158.8
MOD 0.233 0.247 0.226 0.251 0.2256
Qa2
ARG 37.75 36.32 43.36 30.02 31.53
MOD 0.639 0.656 0.661 0.619 0.587
Qi3
ARG 88.67 87.4 95.8 83.8 83.4
MOD 0.3179 0.326 0.344 0.303 0.283
Qa3
ARG 174.7 173.5 -177.1 168.2 168.0
MOD 0.1139 0.116 0.095 0.116 0.1149
Q33
ARG 84.37 83.12 85.1 82.6 81.2
MOD 0.176 0.187 0.187 0.174 0.153
Qa3
ARG 94.2 93.26 100.9 89.67 88.9
MOD 1.716 1.828 1.813 1.735 1.55
Q4
ARG 106.5 105.2 109.2 103.7 103.7
MOD 1.084 1.154 1.134 1.112 0.99
Q4
ARG —-157.0 -1583 —152.4 —162.7 —162.2
MOD 0.179 0.188 0.224 0.132 0.127
Q34
ARG 2.308 0.9758 12.54 160.0 162.6
MOD 0.846 0.931 0.89 0.896 0.743
Qus

ARG 126.0 124.3 127.0 122.2 123.4

where A¥(x;) is the Ith structural mode, AC,’ “’ (x;) is the
pressure due to the Jth mode, and Ay; is the span width of the
panel element considered.

IV. Results and Discussion

To assess the accuracy of the H-G solution and to
demonstrate the computational efficiency and effectiveness of
the present method, various examples of a wide class of wing
planforms are given in Figs. 3-7, together with Tables 1-4.
Correlations with other available data are also presented.
Without loss of generality, the reference chord length L in all
the following numerical cases is set to unity for convenience.
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Fig. 4 Unsteady pressure distribution of an aspect-ratio-two rec-
tangular wing at M =2.0 and K = 1.5; pitching axis at the midchord: a)
pressure distribution along midsection; b) spanwise distributions of
unsteady normal load.

Verification of Accuracy

To verify the present results with other existing methods,
two typical cases are selected for comparison. First, we have
compared the present results with the exact linearized solu-
‘tions in Ref. 20 and those of Miles in Ref. 21 for delta wings
with subsonic, sonic, and supersonic leading edges in steady
lifting flow as well as in slowly oscillatory flow, respectively.
We found that all results for pressures, forces, and damping-
in-pitch moments check well with the above theoretical results.
Second, the computed in-phase and the out-of-phase pressures
at the root-chord section of a high-aspect-ratio rectangular
wing have been compared with various available two-
dimensional results. These include: Chadwick-Platzer!! and
Liu and Pi!° for cases of M=1.15, K=0.4, 1.2, and M=1.5,
K=0.832, 1.25, with pitching axis at leading edge and at mid-
chord, respectively, and Jordon!? for cases of M=1.25,
K=2.0 in plunging mode and in pitching mode. Again we
have found that the present H-G results are in excellent agree-
ment with all the above cases. One such typical comparison is
presented in Fig. 3. Figure 4a shows the root-chord pressure of
an aspect-ratio-two rectangular wing; Fig. 4b shows the span-
wise normal force distribution. Also, good agreement is
observed between the present results and those of Laschka.!?

Computational Efficiency and Effectiveness

In contrast to the previous methods, the present method,
because of its H-G model, improves the computational effi-
ciency by substantially reducing the number of panel elements
used. Meanwhile, the same accuracy can be achieved in most
cases.

Tables 1-4 summarize the generalized forces computed for
the AGARD swept wing, rectangular wing, and wing-tail-fin
combination. In Table 1, we use 150 panel elements to as few
as 30 elements to compute the generalized forces Q,,s, whereas
four previous methods®%!415 adopted 150 panel elements to as
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Fig. 5 Comparison of computed unsteady pressure on a Northrop
F-5 wing with measured data of NLR: a) M=1.328, K=0.1, and
Y=18.1%; b) M=1.188, K=0.11, and Y=18.1%; ¢) M=1.188,
K=0.11, and Y=50%.

many as some 1700 elements. The present results using 30
elements agree well with all other methods. Table 2 presents
the generalized forces for the rectangular wing oscillating in
four selected modes at M= 1.05 and K =2.0. Again, with 50 to
200 panel arrangements we have demonstrated that the present
method at this low Mach number and moderately high fre-
quency results in satisfactory comparison with those of Refs.
14 and 16.

In Table 3, three structural modes are used for the AGARD
T-tail interferences, i.e., tail: #;,=0, h,=0 and A;=7Y; fin:
h; =272, hy=Z(X—0.875Z—3.0) and h; =0.

In comparison with other data quoted, it is interesting to
observe that all methods disagree in forces Q;, and Q;;. We
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POSITION OF HORIZONTAL TAIL
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X y 2
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Fig. 7 Phase plane diagram for generalized aerodynamic coefficients
(AGARD wing-tail configuration).

believe that the disagreement between the present results and
those of Refs. 5 and 6 is probably caused by the explicit
dependence on the exponential term e*** in Eq. (16), which
could be the source of numerical errors in Refs. 5 and 6.
Next, results for an AGARD wing-tail nonplanar case
(Z=0.6) and coplanar case (Z=0) are presented in Table 4
and Fig. 7, respectively, The present results compare well with
those of Ref. 18 in both cases. In Table 4, notice that there is
little difference between results computed using 50 elements
and 100 elements; again, this assures the cost-effectiveness of
the H-G method in that the number of elements can be op-
timized and does not depend on Mach number and reduced
frequency K. Lastly, it should be pointed out that Hounjet’s
result® correlates poorly with the present result for cases of
K=1.5, whereas it correlates well for the case of K=0. The

X1q =3.35
=PITCH AXES FOR
HORIZONTAL TAL FIN

Table 3 AGARD fin-tail interference Zyp,;; =1.2 at M=1.6

and K=1.5

Methods Present  Present Ref. 6 Ref. 5 Ref. 19
Elements (100) (50) (105) (105)

MOD 0.8203 0.8323 0.8238 0.7801 7.1943
Qu

ARG 88.35 89.82 83.58 90.92 79.27

MOD 0.1064 0.1117 0.0887 0.0905 0.20%4
Qu

ARG 119.0 116.6 128.55 131.93 71.51

MOD 0.2056 0.2131 0.1026 0.1898 2.5818
Q31 k

ARG 20.09 25.76 —62.56 72.84 79.67

MOD 0.7133 0.7433 0.7115 0.6860 1.5532
Qi -

ARG 15.8 20.68 13.23 18.22 —24.23

MOD 0.2597 0.2609 0.2600 0.2671 0.3924
Qxn

ARG 61.23 62.53 63.56 67.30 43.99

MOD 0.1611 0.1775 0.0470 0.1397 0.3766
Qs

ARG —-62.46 —-51.27 —166.97 177.11 —68.31

MOD 0.0848 0.0887 0.0954 0.0873 2.4391
Qs

ARG 37.14 40.7 61.86 64.92 87.06

MOD 0.0298 0.0305 0.0316 0.1812 0.0238
Qs '

MOD 21.87 24.45 48.18 7.90 27.75

ARG 0.6493 0.6532 0.7177 0.6686 1.0056
Q13

ARG 84.50 85.58 88.47 89.79 88.01

latter is expected as the e*M* term would vanish and con-
tribute no error.

Correlation with Experimental Data

Finally, we compare our computed results with the ex-
perimental data obtained for the Northrop F-5 platform by
Tijdeman et al. at NLR.?* Figures (5a)-(5c) present in-phase
and out-of-phase pressures AC,s at two span stations
(Y=0.181 and 0.50) at low reduced frequencies (K=0.1 and
0.11). The present results compare fairly well with Tijdeman’s
data, particularly for the out-of-phase pressures. It is in-
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Table 4 AGARD wing-tail interference Zy,;; = 0.6 at M=3.0

and K=1.5

Mevthods Present Present Ref. 6
Elements (100) (50) (170) Ref. 18

MOD 0.2345 0.2427 0.2512 0.2375
Qu

ARG 64.73 66.36 68.57 67.40

MOD 0.3972 - 0.4281 0.4335 0.4029
Qi

ARG 22.58 26.89 21.60 19.35

MOD 0.1325 0.1361 0.2616 0.1504
Q3

ARG 51.47 56.56 58.93 33.55

MOD 0.1008 0.1042 0.1863 0.1180
Q4 ‘

ARG 61.55 66.32 63.55 43.47

MOD 0.0908 0.0982 0.0905 0.0872
Q12

ARG 136.7 136.1 150.71 148.82

MOD 0.3664 0.3842 0.4026 0.3742
Q2

ARG 97.55 98.92 103.68 101.23

MOD 0.1006 0.1063 0.2009 0.1045
Qs

ARG 121.0 120.8 129.58 118.02

MOD 0.0776 0.0820 0.1457 0.0833
Qu

ARG 123.7 123.4 130.66 119.16

MOD 0.3983 0.3965 0.3995 0.3936
Q33

ARG 86.45 86.9 87.62 87.63

MOD 0.2750 0.2751 0.2761 0.2797
Qs

ARG 87.14 88.32 88.80 88.52

MOD 0.5504 0.5638 0.5349 0.5253
Qa4

ARG 32.43 34.97 30.54 30.03

MOD 0.4800 0.4829 0.4555 0.4531
Qus

ARG 51.45 52.66 49.35 47.28

teresting to observe that the measured in-phase pressures ap-
pear to be ““wavy.”” We believe that the waviness of AC,, is
typical of nonlinear unsteady supersonic flow (e.g., see Fig. 19
of Ref. 10), which is beyond the prediction capability of the
present linear theory.

V. Conclusion

It has been shown that the H-G method has the following
advantages over the previous unsteady supersonic methods:

1) The formulation of H-G method is a consistent one; it is
general in the frequency domain.

2) The H-G method procedure is versatile in handling planar
and coplanar as well as nonplanar planforms.

3) The required number of panel elements is least affected
of all the procedures by the given Mach number and reduced
frequencies.

4) The required number of panel elements is only a fraction

of those required by previous PGM methods.
For these reasons, we believe that a computationally efficient,
cost-effective method for unsteady supersonic three-
dimensional flow prediction is finally in hand. Once fully
developed, the H-G method could very well complement the
doublet-lattice method in subsonic flow. It would provide the
aircraft industry with an effective tool for aeroelastic applica-
tions in supersonic flow. '

Further research effort in developing the H-G method is still
required. For example, in the general frequency domain, an
effective method that can handle unsteady flow for bodies of
revolution and for wing-body combinations is still lacking.
Related research areas include the low-supersonic flow regime,
where nonlinearity is important. Although from a practical
standpoint this nonlinear flow regime is of primary impor-
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tance, research efforts in the past have not been fruitful in of-
fering an effective method accounting for the three-
dimensional nonlinearity. Continuing effort to extend the
H-G method toward this end is in progress.
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